Importance of Extracellular Environment for Regenerative Medicine and Tissue Engineering of Cartilagious Tissue
نویسنده
چکیده
Cartilage degeneration caused by osteoarthritis (OA) and trauma is of great clinical conse‐ quence, given the limited intrinsic healing potential of the cartilaginous tissue. OA is the most common joint disease in world populations. Pain during activities of daily living is a common presenting complaint of individuals with OA and is also associated with a decrease in quality of life for people with OA. Its incidence increases with age, and thus this degenerative disease is a major problem in ageing populations. OA is a multifactorial disease of the joints charac‐ terized by gradual loss of articular cartilage. In the recent years, the mechanism of chondrocyte differentiation has come to be well understood owing to the advancement of molecular biology, and researches have rapidly progressed for bioengineering or tissue engineering technique, where it is aimed to regenerate/reconstruct tissues by simulating the process of cell or tissue differentiation during development. Articular cartilage is composed mainly of collagen/proteoglycan (PG) and water. PG accounts for about 7 10% of cartilage tissues, and aggrecan, which is a member of PG representing macromolecules, plays a key role for mitigation of mechanical stress imposed on the cartilage tissues (Maroudas, 1979). A fall in PG concentration is one of the first changes in OA with consequent deleterious effects on the mechanical behaviour of cartilaginous tissues (McDevitt & Muir, 1976, Venn & Maroudas 1977). Among the components of aggrecan, negatively-charged Glycosaminoglycan (GAG) produces a high osmotic pressure in the cartilage tissue, and water is therefore absorbed in the cartilage tissues. As a result, the collagen networks are inflated, and the cartilage tissues acquire elastic resistance characteristic to cartilage tissues to protect from compression force. Thus, the
منابع مشابه
Extracellular Vesicles in Regenerative Medicine, a Brief Review
Extracellular vesicles were initially known as cellular waste carriers, while recent studies demonstrate that extracellular vesicles play important biological roles in all aspects of life-from single cells to mammalians. Their pathophysiological roles in some diseases like cancer are being decoded. Extracellular vesicles are divided into some classes and there are different strategies to isolat...
متن کاملA Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration
Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...
متن کاملTissue Engineered Scaffolds in Regenerative Medicine
Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...
متن کاملAnti-inflammatory Effects of Low-Level Laser Therapy: Mechanisms and Therapeutic Applications
This article has no abstract.
متن کاملRevolutionizing Tissue Engineering through Mirroring Cell Niche and Application of Natural Compounds
onsidering the high prevalence of severe organ failures due to the cancer, congenital anomaly, or trauma, and the consequent needs for tissue transplantation, deficiencies in tissues and organs are a huge challenge for regenerative medicine at the moment. More than 40 years have passed since the term ‘tissue engineering’ was created as a new th...
متن کاملPreparation of decellularized three dimentional scaffolds as the model for tissue engineering and their functional assessments in vitro application of blastema tissue
Tissue engineering is based on three main factors including scaffolds, cells and growth factors. Natural scaffolds derived from decellularized tissues and organs have been successfully used in tissue engineering. Decellularization studies have shown that natural scaffolds which maintaine their main structure and properties could be a suitable tool for studying cellular behaviors and preparation...
متن کامل